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Abstract

This paper has presented a new class of active and passive magnetic constrained layer damping (APMCLD)
treatment for controlling vibration of three-layer clamped-clamped beams. Firstly, optimal placement strategies of
discrete patches are investigated. The predictions of model are validated experimentally using three-layer clamped-—
clamped beams treated with fully or segmented passive magnetic constrained layer damping (MCLD) treatments. The
results indicate that full MCLD treatment induces less improvement of damping characteristics. Also, the obtained
results illustrate that, the improvement of damping performance using two-patched MCLD treatment becomes more
apparent at the first mode compared to the corresponding performance using a single-patched MCLD treatment when
the total length of damping layer is from 0.3L to 0.65L under considered magnetic force. Further, damping perfor-
mances of APMCLD using several control strategies including simple PD controllers are investigated. The analytical
results show that it induces less improvement of damping characteristics for higher modes using simple positive pro-
portional feedback controllers whereas higher modes can been suppressed effectively using negative derivative feedback
controllers. For broad band control of structural vibration, it is more effective using APMCLD treatments with
combined proportional and derivative controllers. Moreover, the MCLD treatment still plays an important role in
damping out structural vibrations even though active control systems fail.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of material, thermal, package, location or cost constraint, partially covered passive constrained
layer damping treatments (PCLD) are often used to damp out a wide variety of vibration of flexible
structures (Kung and Singh, 1998). The PCLD, however, lacks the ability to compensate for changes in
operating or environmental conditions. In order to enhance damping characteristics, numerous papers
reported active and passive piezoelectric ceramic layer damping hybrid treatments (APPCLD) (Reader and
Sauter, 1993; Shields et al., 1998). Although APPCLD treatments have proved to be successfully in
damping out structural vibration, ceramics are brittle and their toughness and fatigue strength are not
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Nomenclature

D, = 5 E bhi bending rigidity of the primary beam

E; Young’s modulus of the ith layer

G storage shear modulus of the damping layer

B loss factor of damping layer

n loss factor of beam

G. = G(1 +1ip) complex shear modulus of damping layer

my mass per unit length of the primary beam

D, = b(Ehi + E3h3)/12 bending rigidity of the sandwich section
b width of beam

m mass density per unit length of sandwich section

Mmag ~ Mmass of a magnet
Nimag thickness of a magnet

M; bending moment of cross-section

S; shear force of cross-section

Ly total length of a single or two patches

L total length of beam

h; thickness of the ith layer

0; mass density of the ith layer material

A; = bh; transverse cross area of the ith layer

u; alternating axial displacement of ith layer
w transverse displacement of the beam

t time

sufficient against externally applied shock loading and cyclic stress. The concept of magnetic constrained
layer damping treatment (MCLD) is introduced (Ruzzene et al., 2000; Baz and Poh, 2000). A finite element
model was developed to study performance characteristics of a fully covered cantilever beam with MCLD
treatment (Ruzzene et al., 2000) and the improvement of damping characteristics was validated experi-
mentally (Baz and Poh, 2000). Although the MCLD does not require for its operation any electronic
sensors or control circuitry, the ability to compensate for changes in operating or environmental conditions
is still limited.

Generally, cantilever beams are very flexible structures and they become more flexible when beams are
treated with MCLD (Ruzzene et al., 2000; Baz and Poh, 2000), it is unsuitable using MCLD treatment in
some cases. Amount of clamped-clamped beamlike elements whose stiffness is higher than that of cantilever
beamlike elements exist in structures ranging from machines to space vehicles. On some of them instru-
ments are fixed and also the elements themselves need to eliminate destructive resonance. It is therefore the
purpose of this study to investigate the improvement of damping characteristics for a clamped—clamped
beam using segmented MCLD treatment and further introduce the new class of active and passive magnetic
constrained layer damping treatment (APMCLD) as a viable alternative to active and passive surface
treatments. As the APMCLD utilizes electromagnetic actuators, it achieves actuation performance that is
much higher than that of the APPCLD. With such capabilities, the APMCLD can provide a viable means
for controlling large amplitudes of vibration.

In the present paper, the emphasis is placed on comparing the damping performance of clamped-—
clamped beams treated with one or two MCLD patches for selecting optimal placement strategies of
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discrete patches and on investigating theoretically the effectiveness in controlling multi-modes of vibrations
using simple proportional or/and derivative controllers. Such investigations would help to determinate
design guidelines of APMCLD treatments.

The paper is organized in six sections. In Section 1, a brief introduction is given. The concept of AP-
MCLD is presented in Section 2. In Section 3, the analytical model is derived employing Hamilton’s
principle. The experimental performance of beam/MCLD and optimal placement strategies of discrete
patches are investigated in Section 4. In Section 5, the damping performance of APMCLD using simple
proportional and derivative controller is evaluated theoretically. In Section 6, the conclusions are given.

2. The concept of APMCLD treatment

The concept of APMCLD can be best understood by considering the schematic representation of
clamped—clamped sandwich beams shown in Fig. 1. Fig. 1(a) and (b) shows two possible configurations of
discrete patches of same total length Ly, where a single patch is placed near the left end of beam with a small
offset as shown in Fig. 1(a) or two patches symmetrically covered from each of both fixed ends with a small
offset as shown in Fig. 1(b). The constraining layers (CL) are fitted with root magnets whereas integrated
electromagnetic coils are placed in the base instead of permanent magnets as described by Ruzzene et al.
(2000) and Baz and Poh (2000). The integrated electromagnetic coil consists of a self-sense coil and elec-
tromagnetic coil with ferromagnetic material as described in the papers (Lin, 1998; Changhwan and
Kyihwan, 1999). The self-sense coil picks up gap variation signal between electromagnetic coil and perma-
nent magnet. The pickup signal would be amplified and fed back to activate the electro-magnetic actuator
under several control strategies including simple PD controllers. When the beam treated only with MCLD
is in undeflected configuration, static magnetic attractive force resulting from magnets and ferromagnetic
material produces static shear strains 7, in the viscoelastic layer. Fig. 1(c) shows deflected beam treated only
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Fig. 1. Magnetic constraining damping treatment. (a) Undeflected beam treated with a sing APMCLD patch, (b) undeflected beam
treated with two APMCLD patches and (c) deflected configuration.
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with MCLD under the action of an external bending moment M. Due to the moment M, the gap between
the magnets decreases, causing magnetic attraction force rise, the increment of shear strain yp, = y, — 7, is
higher than the shear strain of the PCLD under external load of same moment M. Increasing the shear
strain enhances the energy dissipation. When the beam is treated with APMCLD, it is possible to enhance
the shear strain of VEM and significant improvement of damping characteristics may be realized.

3. Analytical modeling

The beam can be separated into several sections either without or with damping patches. The sections
without patch are ordinary beams and the sections with patch are sandwich configurations.

Now let us consider the vibration of sandwich Section 2 shown in Fig. 1(a) and (b). The following as-
sumptions are made in the analysis: (1) the beam deflection is small and uniform across any section; (2) the
primary layer and the constraining layer are assumed to be isotropic; (3) the longitudinal and rotary inertia
effects of the beam are neglected; (4) the damping layer carrying shear, but no direct stress, are assumed to
be linear viscoelastic; and (5) no slip occurs at the interface between the layers.

We choose static equilibrium state as a reference position. The longitudinal displacements and shear
angle as follows refer to the variation with respect to the reference position.

The potential energy of Section 2 is

V= (Vl + V3)bending + (Vl + V3)extension + (VL')shearing

1 b o*w ?
(I/l + %)bending = 5 /L Dt(@) dr

1 (b aw\’ 1" dus \’ (1)
(Vl—"_Vf‘)extension_E‘/Ll El*"h(&) &+§[1 E3A3(a> dx

1 [ )
(Vc)shearing = z /L GcAcyc dx
1

After neglecting longitudinal and rotary inertia and assuming the mass of permanent magnet concentrate at
x = L. The total kinetic of Section 2 is

1 b ow\? 1 ow\?
s (%) w] (%)

The fourth assumption implies that the sum of forces in the longitudinal direction is zero, i.e.
(EA), (w1 /3x) + (EA)3(0us /Ox) = 0 (3)

x=L; (2)

thus
uy = —c — [(EA),/(EA),us (4)

the constant ¢ is added so as to have an appropriate longitudinal displacement distribution. Note that this
constant ¢ has been ignored by many prior researchers but it is retained here since it plays an important role
in deriving differential equations and boundary conditions.

In Fig. 2(a), we have the relationships:

e = [H(@w/0x) + s — ) /he = [H(Ow/ox) + ¢ + pusl 5)
where H = h. +1(hy + h3), p = 1 + (EA),/(EA),.



H. Zheng et al. | International Journal of Solids and Structures 40 (2003) 6767-6779 6771

Us | o
B W, section 1 W section 2
EA Ye - M Le FOI\;F: E "
hs 11 G.A: Yy X F°'§{J( %ﬂ Fo-F, (L’} ] ¥§’>
] “en W S, S, 0-Fg SX
o S, x=L"3
x=0 x=L,

(a) (b)

Fig. 2. The deformation and loads. (a) The geometry and deformation of Section 2, (b) Sections 1 and 2 with loads and moments.

Since the length of Section 1 is very short, the effect of pressure on work is negligible. Work done by

external force is given by
0 0
v ) e () -5
Ox =L, Ox
where Wy, 1s work done by magnetic force Fia. Fnag 1S x-direction component of the magnetic force.
Fiag = Fy + Fy, Fy 1s the static component, Fy is the dynamic component. Since the sum of work done by the
static component F, acting on the primary and constraining layer is zero, work done by Fy is only con-
sidered.
When APMCLD treatments operate in their open-loop mode or with zero control gain, APMCLD

treatments is identical to the MCLD treatments, whose dynamical magnetic force results from the gap
variation Ax between magnets.

Fy = (OFnag/Ox[,_p, ) AX = Kingg Ax (7)

where Ax = hyy, + H, (0w, /Ox| _, — 6wz/ax|X:Ll), H,=hy+ hy + (" + hiag) /2, Kinag = 6Flnag/6x|x:Ll.
When the dynamical force Fy is generated by the controller in proportion to and derivative of the

measured variation of gap between the root magnet and the coil such that
0Ax
Fy = (Kmag + Kp)Ax + K, ot (8)

Provided that the longitudinal displacement vibration is harmonic, then

+ VVmag

x=L

(6)

x=Ly

0Ax .
Fy = (Kmag + Kp)Ax + K, e (Kimag + Kp + 10K,) Ax = Ky Ax 9)

where Kq = K,y + K, + 10K, K, is the proportional control gain, K, is the derivative control gain,  is
harmonic frequency.
Applying Hamilton’s principle

1]
5/ (T—V+W)dt=0 (10)
5|
we obtain the differential equations of motion of Section 2
otw *w Ous *w
~  _oH|HZZ - — = 11
b =9 ( 62x+p6x>+m62t 0 (1)
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or, in terms of the deflection alone,

[66 (QH2+ Qp>a4+m o op 62]w:o (13)

¢ \ D, | Esds )x* ' D, ox202  EsAsD, ot
where Q = %4,

In addition, Hamilton’s principle yields the following beam boundary conditions:

*w Ous 3w ow
x:Llet@:M‘;, E‘3A3§:07 Dtm—QH(Ha—l—pm—i—c):S} (143‘0)
*w ow
x:Ll:—Dt@+M2—Kd(H—Hn){(H—Hn)aerw+c] -0
3w ow 1 *w
D2l oH(HZE — 85+ = Mgy = =
oy @ ( ax+p”3+c) S2+ 5 mmag 3 =0
Bty 20 ki = )2 s e| = 0 (15a<)
PL3A3 o d ") ox pus =

Three unknown values w, u3, ¢ cannot be obtained through the two Eqgs. (11) and (12). Let v = pus + ¢,
now Egs. (11) and (12) only include two unknown values w, v. The constant ¢ can be obtained from the
supplemental condition u;(L;) = 0.

To solve Eqgs. (11) and (12) for harmonic vibrations, assume the solution to be of the form (Mead and
Markus, 1969)

w o Wy kK x iw*t
{U}{vn}ee (16)

where * and £* denote the unknown complex natural frequency and characteristics values to be deter-
mined.
Substitution of Eq. (16) into (13) yields
K + sk + 52k + 59 = 0 (17)

where Sq4 = —[QHZ/Dt + Qp/(Ey‘h)], Sy = —ma)*z/D,, Sy = ma)*zQp/(E;A;D,) For any (JJ*, let kf,k;, A ,k;
denote the six zeros of Eq. (17). Then, a general solution of Eq. (13) can be written as

w(x,t) = 26: Cielivel" (18)
=
where Cj,. .., C; are six constants to be determined.
Furthermore, from Eqgs. (11) and (12), we have
v(x,t) = ingjekf"eiw*’ (19)
j=1
where

g = E3A3Dzk;5 B E3A3Hk;3 B (E3A3mw*2
o QHp Op QHp

With respect to ordinary beams, the differential equation of motion for Section 1 is governed by (see Fig.

2(b))

+H>k;r (j=1,2...,6) (20)
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o*w *w
Dt1<@)+ml<§> =0 (21)

The boundary conditions are

) 0
x=L,x=0:wx) = we, vgix) =0 (22a,b)
*w Pw
X:LiiDn@:Mia Dtl@:‘s‘i (23a,b)
Assume the solution to be of the form
10 o
w(x, t) = Z Cie're (24)

=

where C; and &} denote complex values.

In a like manner, we can obtain the differential equations of motion and boundary conditions of other
sections. Also, the continuous conditions of transverse displace w and rotary angle 0 atx =L; (i = 1,2,...),
yield supplementary conditions. We obtain the characteristics determinant.

det[D] = 0 (25)

Eq. (25) is a non-linear, complex valued equation for unknowns o, k7. The problem is solved numerically
using a trial and error technique in which the initial values are assumed to be those of an uncovered Euler
beam. Complex double precision has been used to obtain the results. The complex frequency w*, the real
frequency w, and the loss factor 5 of the beam are related by w = y/Re(w*?), n = Im(w*?) /Re(w*?).

4. Performance of MCLD treatment

In this section, the experimental performance of the MCLD (i.e. K, = K, = 0, only Ky, retained) with
one or two patches as shown in Fig. 1(a) and (b) is determined and compared with the theoretical pre-
dictions as obtained from the analytical model described in Section 3. Note that in the experiments, the
electro-magnetic coils in the fixed ends are replaced by permanent magnets as described in prior papers
(Ruzzene et al., 2000; Baz and Poh, 2000).

4.1. Material properties and experiment

Two kinds of beam configurations with PCLD/MCLD treatments are used as test articles in this study.
The first kind of clamped-clamped beams are treated with a single patch as shown in Fig. 1(a) while the
second kind of beams are treated with two patches as shown in Fig. 1(b). In two-patched treatments, each
patch of length of 0.1L, 0.2L or 0.3L is placed symmetrically near each fixed end of the beam with an offset
of 0.001 m. In single-patched treatments, a single patch of length of 0.2L, 0.4L or 0.6L is also placed near the
left end of the beam with an offset of 0.001 m. Moreover, a full covered beam with a small cut of 0.001 m in
each end of the CL is also used as a test article, where root magnets are only placed on the left end of CL.
The gap between permanent magnets is 0.001 m. The permanent magnets in the experiments are arranged in
attraction and made of NdFeB blocks (0.02x0.005x0.005 m) with residual induction B, = 1.19 T, and
magnetized through x-direction. The attractive force produced by two permanent magnets can be analyzed
by Tsui’s method in which the magnetic moment of a permanent magnet is represented by an equivalent
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face current loop (Tsui, 1972), consequently, the magnetic stiffness K., of magnets in the experiment is
9.8E3 N/m.
The other experimental parameters are

W =5E—4m, h2=35E3m, h3=25E—4m, b=2E—-2m, L=04m,
p, = 600 kg/m’, E; = E; = 7.10E10P,

p = ps = 2.TE3 kg/m”, 1gG = O.lOlSlg%—l— 5.1817

n=3.3x10 x (3)3 — 433 %107 x (3)2 +2.09 %1072 x (52 ) +0.1722
2n 2n 2n

Each end of the beam is subject to the sinusoidally varying transverse displacement W,e'®". Note that
only symmetrical modes of beams with two patches are excited. The response of beam at x = 0.5L is
measured. First several natural frequencies (f,) and modal loss factors (7,) are then extracted using the half-
power bandwidth method (Ahid et al., 1985). Tables 1-3 list frequencies and loss factors for the first and
third modes of beams treated with different MCLD treatments. The predictions are in good agreement with
the experimental results.

4.2. Optimal placement strategies of discrete patches

Fig. 3(a)—(c) illustrates the variation of loss factors of beams for the first three modes with damping
length. The results indicate that, at the first mode, using full covered MCLD treatment it has almost no

Table 1
Effect of PCLD/MCLD with two patches (Ly: total length of two patch)
Ly/L Calculation Experiment
/i (Hz) iR /3 (Hz) UB Ji (Hz) iR /3 (Hz) U
0.2 PCLD 17.35 0.0195 89.15 0.0233 17.40 0.0198 89.38 0.0247
MCLD 16.90 0.0321 87.30 0.0303 16.88 0.0318 87.43 0.0310
0.4 PCLD 18.23 0.0612 74.46 0.0435 18.34 0.0610 74.60 0.0446
MCLD 16.97 0.0900 76.03 0.0437 16.89 0.0890 75.96 0.0441
0.6 PCLD 16.35 0.0772 85.94 0.1138 16.45 0.0762 85.67 0.1144
MCLD 14.80 0.1080 85.94 0.1137 14.34 0.1025 85.90 0.1148
Table 2
Effect of PCLD/MCLD with a sing patch (Ly: length of a sing patch)
Ly/L Calculation Experiment
/i (Hz) M /3 (Hz) s /i (Hz) M /3 (Hz) B
0.2 PCLD 17.48 0.0417 80.09 0.0267 17.08 0.0396 80.79 0.0289
MCLD 16.83 0.0509 79.72 0.0273 16.43 0.0518 80.43 0.0286
0.4 PCLD 14.67 0.0505 91.80 0.2961 14.62 0.0517 90.95 0.2892
MCLD 13.96 0.0572 91.95 0.2989 13.33 0.0570 91.03 0.2980
0.6 PCLD 16.32 0.0752 86.27 0.1229 16.90 0.0746 85.87 0.1287

MCLD 14.83 0.0992 86.10 0.1227 14.54 0.0946 85.65 0.1213
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Table 3
Effect of full covered PCLD/MCLD
Calculation Experiment
/i (Hz) m /3 (Hz) 13 /i (Hz) m /3 (Hz) 13
PCLD 21.84 0.3213 82.10 0.4450 21.71 0.3245 81.79 0.4346
MCLD 21.83 0.3214 82.10 0.4451 21.68 0.3252 81.56 0.4334
0.35 . . . . . . . . 035
(a) 1st mode (b) 2nd mode
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Fig. 3. Variation of loss factors of beams with damping length (1: two patches; 2: a single patch; -: PCLD; - - -: MCLD). (a) First mode;
(b) second mode; (c) third mode.

effects on loss factor. In this point, it differs from that of the cantilever beam with full covered MCLD
treatments, in which MCLD treatments induce significant damping improvement (Ruzzene et al., 2000; Baz
and Poh, 2000). However, using single-patched MCLD treatments it can enhance the damping of beams
when damping layer is short whereas two-patched MCLD treatments can significant enhance damping even
though the total length L, of the two patches is close to the full length of beam. Such phenomena are also
observed in Tables 1-3. The results indicate also that the damping improvement resulting from two-patched
MCLD treatments is more apparent for the first mode compared to the corresponding performance of
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single-patched treatments when the length of damping layer is between 0.3L and 0.65L under considered
magnetic force. It is found that, however, for the second and third modes, in both of the MCLD segmented
treatments, long damping layer induces less improvement of damping characteristics whereas short dam-
ping layer can simultaneously enhance damping.

It is evident that arranging the magnets at a smaller gap (consequently higher magnetic stiffness) is more
effective in enhancing damping characteristics. Fig. 4(a)—(c) illustrates the effect of magnetic stiffness K4 on
loss factors for the first three modes using both the MCLD segmented treatments. Note that for the
MCLD, Kj is identical to Ki.g. The results in Fig. 4 are obtained with such parameters as follows. In two-
patched treatment, each segment is 0.25L long. In single-patched treatment, the segment is 0.5L long. The
other parameters are identical to those in the experiment. Curves 1 illustrate that, in two-patched MCLD
treatments, increasing the magnetic stiffness increases rapidly the loss factor for the first mode in a nolinear
way whereas significant improvements of damping for the second and third modes are obtainable only
when the magnetic stiffness is very high. Curves 2 illustrate that, in single-patched MCLD treatments,
increasing the magnetic stiffness induces less damping improvement for the first two modes and also sig-
nificant improvement of damping for the third mode is obtainable only when the magnetic stiffness is very

07 T T T T T 0.18
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o6 1 016} 2nd mode
//
% 05} 71 g o014}
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Fig. 4. Variation of loss factors of beams with Ky (1: two patches; 2: a single patch; -: PCLD; ---: MCLD) (a) first mode; (b) second
mode; (c¢) third mode.
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high. The results indicate also that one or two patches MCLD treatment has its own advantage compared
with each other. Such results help us select the optimal configurations of discrete patches of MCLD
treatments in different operation conditions.

5. APMCLD treatments using several control strategies

Usually, the first mode plays an important role in structural vibration, hence in these cases, two-patched
MCLD treatments may be considered as feasible approaches to suppress structural vibrations. However,
obtaining higher magnetic stiffness for controlling higher modes is rather difficult and the ability of MCLD
to compensate for changes in the operating or environmental conditions is limited. In order to control
structural vibrations over a broad band frequency, the APMCLD treatment as described in Section 2 is a
natural extension to the MCLD treatment. In this section, the emphasis is placed on investigating theo-
retically damping performances of the two-patched APMCLD treatment as shown in Fig. 1(b) with VEM
shear modulus G under different control strategies. Such investigation will help to develop design guide-
lines.

Several control strategies are considered to activate the magnetic actuators as follows: (1) simple pro-
portional control; (2) simple derivative control; (3) combined proportional and derivative control. The
analytical parameters chosen are: each patch is 0.25L long (i.e. Ly/L = 0.5), f = 0.4, the other parameters
are identical to those in the experiment unless stated.

Fig. 5(a)—(c) illustrates the variation of loss factor # of the beam with VEM shear modulus G for the first
three modes. Curves 1 are obtained with PCLD treatment. Curve 1 in Fig. 5(a) illustrates that, in the PCLD
treatment, a maximal loss factor is only obtainable at a particular value of G, and that as G deviates from
Gopt, loss factors for the first mode would decrease rapidly. The same phenomenon was also observed for
the fully covered damped sandwich beam (Ahid et al., 1985). In practice, G would decrease because of
temperature rise in operation, and the VEM of optimal shear modulus G is not always available. Therefore
the better damping is not easily realized.

Curves 2 are obtained with MCLD treatment (Kpae = 9.8E3 N/m). Curve 2 in Fig. 5(a) indicates that the
improvement of MCLD for G < G, is significant whereas the improvement for G > G,,; become little.
The phenomenon may be explained as follows. Increasing G increases the dynamical forces acting on the
CL. Consequently, the ratio of dynamical magnetic force Fy to the maximal dynamical force Fy,,x acting on
the CL is reduced not enough to affect deformation of sandwich beam. Such results reveal that significant
improvement of damping characteristics for the first mode exists over a broad G range. This implies that the
limitation to VEM of MCLD treatments is less than that of PCLD treatments and the degeneration of
damping characteristics because of temperature rise can be compensated for to some extent using the
MCLD.

Curves 3 are obtained with proportional controller that has proportional gain K, = 8.4E3 along with
MCLD treatment (K. = 9.8E3 N/m). Note that the MCLD treatment at different gaps between perma-
nent magnets is identical to APMCLD treatments using a proportional controller for different gains. Since
the shear strain of the second and third modes is too small to produce strong dynamical magnetic force
(Kung and Singh, 1998), the ability to control higher modes vibration is still limited over a broad range of G
as shown from curves 2 (K, = 9.8E3) and curve 3 (K, = 1.82E4) in Fig. 5(b) and (c). Although higher
modes can be suppressed by increasing proportional gain K, as shown in Fig. 4(b) and (c), high gain would
cause active control system unstable and is difficult to implement.

Curves 4 and 5 are obtained with derivative controller that has derivative gain K, = +100 and
K, = —100 respectively along with MCLD treatment (K, = 9.8E3 N/m). It can be seen that significant
improvements can be obtained for higher modes with negative derivative feedback controller whereas less
improvement of damping can be obtained with positive derivative feedback controller but for the second
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Fig. 5. Variation of loss factor n with VEM shear modulus G. (a) First mode, (b) second mode, (¢) third mode 1: PCLD; 2: MCLD
(Kimag = 9.8E3 N/m); 3: proportional (K, = 9.8E3 N/m, K, = 8.4E3); 4: derivative (K., = 9.8E3 N/m, K, = —100); 5: derivative
(Kmag = 9.8E3 N/m, K, = 100); 6: combination (K., = 9.8E3 N/m, K, = 8.4E3, K, = —100).

mode under lower VEM shear modulus. This may be explained as follows. When the APMCLD beam with
derivative controller vibrates, at the moment variation of gap between magnets becomes zero, actuator with
negative derivative controllers produces a magnetic repulsive force resulting in a shear strain distribution
7o(x) in damping layer which is in counter-phase with the shear strain distribution y,(x) at the moment the
gap becomes minimal resulting from the deflection deformation of the sandwich section. Thus the variation
of VEM shear strain per cycle of vibration increases and consequently enhance energy dissipation. Simi-
larly, at the moment variation of gap between magnets becomes zero, actuator with positive derivative
controller produces magnetic attractive forces resulting in shear strain y,(x) in damping layer which is in
phase with the shear strain distribution y,(x) at the moment the gap becomes minimal resulting from the
deflection deformation of the sandwich section. Not that since the y,(x) is much larger than y.(x) for the
second mode with low VEM shear modulus, the variation of VEM shear strains per cycle of vibration
exceeds strain of PCLD treatment and significant improvements can also be obtained in this case as shown
in Fig. 5(b) whereas in other cases, the variations of VEM shear strains per cycle become smaller than
strains of PCLD treatment and consequently decreases loss factors of beam.
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Curves 6 are obtained with combined proportional and derivative controller that has proportional gain
K, = 8.4E3 and derivative gain K, = —100 along with MCLD treatment (K., = 9.8E3 N/m). Since the
proportional controller plays an important role in suppressing the first mode of vibration while the de-
rivative controller plays a dominated role in controlling the second and three modes of vibration, higher
damping can be obtained for the first three modes simultaneously.

Note that the MCLD treatment still plays an important role in controlling vibration for low order modes
even though active control system falls in failure.

6. Conclusions

This paper has presented a new class of active and passive magnetic constrained layer damping treat-
ments. The predictions of model are validated experimentally using three-layer clamped—clamped beams
which are treated with fully or segment MCLD treatments. Such conclusions are drawn.

(1) Full treatments with MCLD induce less improvement of damping characteristics. The improvement
of damping characteristics using two-patched MCLD treatment becomes more apparent for the first mode
compared to the corresponding performance using single-patched MCLD treatment when the total length
of damping layer is between 0.3L and 0.65L under considered magnetic force. It is found that, however, for
higher modes, in both the two kinds of segmented MCLD treatments, long damping layer induces less
improvement of damping characteristics while short damping layer can enhance damping for broad band
structural vibration.

(2) The interaction between magnets and damping layers is sensitive to the damping layer’s shear
modulus G. The improvement of damping characteristics exists over a broad G range for G < Gop.

(3) The APMCLD treatment could present a viable means for controlling high amplitudes of vibration
over a broad band frequency. It has less improvement of damping characteristics for higher modes using
simple displacement positive feedback controller whereas the higher modes can been suppressed effectively
using velocity negative feedback. The combination of displacement and velocity feedback can suppress the
first several modes simultaneously. Moreover, the MCLD treatment still plays an important role in
damping structural vibrations even though the active control falls in failure.
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